Conference Paper: Secondary User Access for IoT Applications in the FM Radio Band using FS-FBMC
Jul 2018, IEEE 1st World Forum on 5G (5GWF’18)
In this paper a Dynamic Spectrum Access (DSA) Physical layer (PHY) technique is proposed that allows Secondary User (SU) access to the traditional FM Radio spectrum (88-108 MHz) for alternative data communication applications. FM radio waves have excellent propagation characteristics for long distance transmission, and have high levels of penetration through buildings. Using tools such as a structured geolocation database of licensed Primary User (PU) FM Radio transmitters, unlicensed SUs can access portions of the 20 MHz-wide band and transmit signals that place spectral ‘holes’ with suitable guard bands around all known PUs. Based on the PU protection ratios published by Ofcom and the FCC, the operation of a FBMC (Filter Bank Multi-Carrier) transmitter is demonstrated for an urban environment, and through ‘field test’ simulation it is shown that the Out Of Band (OOB) leakage of the proposed PHY (energy in the ‘holes’ that can interfere with the PU) is 47 dB lower than that of using an equivalent OFDM PHY. The results show that the proposed PHY is a suitable candidate for DSA-SU communication (e.g. in smart city IoT applications), whilst ensuring the integrity of incumbent PU signals.
https://pureportal.strath.ac.uk/en/publications/secondary-user-access-for-iot-applications-in-the-fm-radio-band-u
Conference Paper: Partial Discharge Localization Based on Received Signal Strength
Sep 2017, IEEE International Conference for Students on Applied Engineering (ICSAE)
Partial Discharge (PD) occurs when insulation containing defects or voids is subject to high voltages. If left untreated PD can degrade insulation until, eventually, catastrophic insulation failure occurs. The detection of PD current pulses, however, can allow incipient insulation faults to be identified, located and repaired prior to plant failure. Wireless technology has paved the path for PD detection and monitoring. Software Defined Radio (SDR) is a promising technology. Signals from two PD sources are received at six outdoors locations using an SDR USRP N200 which is connected to a laptop. PD sources, thereafter, are localized based on received signal strengths.
dx.doi.org/10.23919/IConAC.2017.8082028
Conference Paper: Partial Discharge detection using Software Defined Radio
Oct 2016, IEEE International Conference for Students on Applied Engineering (ICSAE)
Partial discharge (PD) is an electrical discharge that occurs within part of the dielectric separating two HV (High Voltage) conductors. PD causes damage to the dielectric which typically deteriorates with time. If left untreated, PD may result in catastrophic insulation failure, destruction of HV equipment, and disruption of power supply. The emergence of wireless network technology and software defined radio has opened new opportunities in PD monitoring and early detection of failures. This paper proposes the use of Universal Software Radio Peripheral (USRP) technology for PD detection.
dx.doi.org/10.1109/ICSAE.2016.7810220
Conference Paper: Partial Discharge Detection Using Low Cost RTL-SDR Model for Wideband Spectrum Sensing
Apr 2016, IEEE International Conference on Telecommunications (ICT)
Partial discharge (PD) is one of the predominant factors to be controlled to ensure reliability and undisrupted functions of power generators, motors, Gas Insulated Switchgear (GIS) and grid connected power distribution equipment, especially in the future smart grid. The emergence of wireless technology has provided numerous opportunities to optimise remote monitoring and control facilities that can play a significant role in ensuring swift control and restoration of HV plant equipment. In order to monitor PD, several approaches have been employed, however, the existing schemes do not provide an optimal approach for PD signal analysis, and are very costly. In this paper an RTLSDR (Software Defined Radio) based spectrum analyser has been proposed in order to provide a potentially low cost solution for PD detection and monitoring. Initially, a portable spectrum analyser has been used for PD detection that was later replaced by an RTL-SDR device. The proposed schemes exhibit promising results for spectral detection within the VHF and UHF band.
dx.doi.org/10.1109/ICT.2016.7500353